
C H A P T E R 7

ANALYSIS CONCEPTS:
MODELING

Farming looks mighty easy when your plow is a pencil,

and you're a thousand miles from the cornfield.
-Dwight D. Eisenhower, speech in Peoria, Illinois, 25 September 1956

MODELS, SIMPLE OR COMPLEX, are the abstract constructs we
use to compare alternatives. In defense resource alloca-
tion, models have four functions: organization of a prob-

lem, comparison of alternatives, measurement, and prediction. The first function we
discussed in Chapter 2 as we defined and organized the problem. This chapter expands on
the methods for combining criteria into models specifically designed to support analysis.
The most frequent use of analytic models in DoD is to compare procurement and policy op-
tions on the basis of cost and effectiveness in the Analysis Phase.1

Our intention in this chapter is to familiarize you with the analytic modeling tools and ter-
minology of the analyst, not to have you memorize classifications and characteristics of mod-
els. As you read this chapter, remember our goal is to make you a critical director and
consumer of analysis who can confidently evaluate modeling proposals. By understanding the
difference between good models and bad models and by subjecting analytic models to profes-
sional scrutiny in terms of validity, reliability, and practicality, you will be able to evaluate the
quality of analysis without becoming a subject matter expert and thereby make good execu-
tive decisions.

Characteristics of Analytic Models
Analytic models are a specific class of models. They are so named because they are models com-
posed of the separate parts of a problem—a problem identified by the analytic objective and the
parts that were important enough to be facts, assumptions, or criteria. Analytic models require
that their builders and users have an understanding of how those parts fit together. Analytic
models are, at heart, based on the scientific method and they have a clear logical or mathemati-
cal structure.2

Definition

Analysis

Decision

Reconciliation

Execution

1. Within DoD, some cost and effectiveness analyses are given names that specify their structure and content. DoD uses the Analysis

of Alternatives format, which superseded the Cost and Operational Effectiveness Analysis format in 1996, to support acquisition

milestone reviews. DoD initiated the V-22 case study used throughout this text as a Cost and Operational Effectiveness Analysis.

2.  Mathematics is often the language of modelers because of its wide applicability to seemingly unrelated problems. For example,

the same form of equation describes the decay of a radioactive isotope, the swing of a pendulum, the decline of a population, etc.



With unlimited resources, including
time and money, we would not need
models, and we could satisfy our require-
ments with full-sized experiments and
real-world observations. But we are
forced to model by the prohibitive cost of
experimenting in the real world, al-
though the real world is our starting
point for the analytic model as we show
in figure 7-1. We will examine the major
characteristics of analytic models—ab-
straction, complexity, and predic-
tion—in more detail below. When we
defined the problem, we set the stage for
selecting many of the characteristics of
our analytic models.

LEVEL OF ABSTRACTION
Our translation of the real world into an analytic model is an abstraction because it reflects a
simplified reality containing only those factors and relationships we deemed important for solv-
ing the problem. The level of abstraction is inversely proportional to the degree to which the
model literally replicates reality. Some models have a great physical resemblance to reality, e.g.,
mock-ups, prototypes, and miniatures. Others models, like the differential equations that rep-
resent the airflow around a ballistic missile warhead, bear little resemblance to the physical
world they are used to investigate.

Most of the analytic models we use in DoD vary greatly from reality because they are based
on mathematics or use scale representations such as time compression. Full-scale models, such
as prototype aircraft, have few (if any) departures from reality. Policy analysis also takes advan-
tage of full-scale models; before launching a new quality of life program, we usually test the pol-
icy in a pilot program as we see now being done with several military health program initiatives.

Iconic models are scaled down replicas of the real world, such as model airplanes, maps,
globes, and photographs. We use iconic models to provide information without going to the ex-
pense or difficulty of building full-scale models, assuming the model's performance mimics real
world performance. Note that the level of abstraction need not be connected to the complexity
of the model. Some highly abstract models are very complex, such as those for space flight plan-
ning, and other highly abstract models are quite simple, like a flow chart.

COMPLEXITY
The complexity of analytic models is a function of the number of variables we need to measure,
the resolution to which we measure them, and how many resources we have available to
model—validity, reliability, and practicality concerns. We will also have some uncertainty
about how well the interactions among elements of the model reflect reality. In the simplest
case, we have rigid, full-scale analytic models; in the most complex models, we include interac-
tions among the variables and insert events while the model is running.
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Figure 7-1. Models and the Scientific Method.3

3. Adapted from Samuel B. Richmond, Operations Research for Management Decisions, New York: The Ronald Press Co.,

1968:.30.



Static models are representations of reality at a fixed point in time, freezing both time and
position, such as a map or an organization chart. Because they do not incorporate change, they
are generally simple and inexpensive. Their simplicity is helpful when we have a wide divergence
of opinions and perceptions about the problem amongst the decision participants.

Dynamic models incorporate change in terms of time, events, and motion, e.g., a fuel usage
curve that displays gallons consumed as a function of hours in operation, a graph of accidents as
a function of crew rest, and computer simulations of weather conditions. Adding change to cre-
ate dynamic models adds complexity and uncertainty to them. Dynamic models are often more
difficult to describe and display, especially the interactions among variables. Even so, we use
them to take into account interactions that we know to be important in the real world. To the
extent that they succeed, dynamic models reflect the real world better than static models.

Yet, even simple static models may include important uncertainties; cartographers do not
survey every square inch of the terrain represented by a map, yet every square inch is repre-
sented. Just as in the Definition Phase, the analysts and we are forced to make modeling as-
sumptions to cope with uncertainty. We must take into account the uncertainty of important
but uncontrollable variables in dynamic and interactive models, such as weather or the price
of fuel.
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NETWORKS, COMPLEXITY, AND UNCERTAINTY

Predictive modeling is based on the assumption that the future can, at least in part, be fore-

cast by knowing the past and understanding how variables, including our criteria, act and interact

within their environment. Some prominent theorists believe this assumption is fundamentally

wrong. Chaos Theory is a well-known approach that describes a world where chance rules su-

preme and confounds our ability to predict outcomes that may vary wildly despite nearly identical

initial conditions.4 When we look at initial conditions and then outcomes long afterward, it is very

difficult to identify exactly why the outcomes were so different. If, however, we start at the begin-

ning and catalog the intervening events with ever more resolution, we can identify a linear series

of decision points and chance occurrences (nodes) that keep branching out until we have a huge

but exhaustive set of possible outcomes.

As we progress from node to node, some branches may merge into nodes with other

branches, creating multiple paths to the same outcome—a network. The path we uncover by re-

verse engineering the outcome is one possible path among many in a network of unknown di-

mensions. Chaos theorists see any progression of events to an outcome as non-unique; one path

along a network may be repeated later, but neither the path nor the outcome is predestined by

the initial conditions. The longer the time interval and the more numerous the events, the larger

and more complex the network and collection of paths and outcomes become and the more diffi-

cult it is to model. We can complicate the network further by adding more starting points.

Chaos Theory operates from the assumptions that: (1) the future is not linked to the past in a

linear fashion, therefore we need higher order mathematics to approximate or model future be-

havior; (2) events in nature are very sensitive to initial conditions, therefore small, hardly measur-

able changes in one variable at the beginning of a chain of events can dramatically change the

4. A typical example posits a child dropping two ping pong balls into the Niagara River above the falls. One winds up washing

ashore near the base of the falls and the other comes to rest on the coast of Africa.



PREDICTION
Analytic models make predictions about the outcomes we should expect; given our decision to
use a particular model, our choice of input values, and our choices between alternative courses
of action. If a decision-maker has confidence in a model and in the chosen set of input values,
these predictions will help him choose a course of action.

Whenever we can, we evaluate a model's quality by comparing its predictions with
real-world outcomes, then we calibrate it to better predict and improve our confidence in it. Of
course, the extent to which we can do this depends on the kind of problem we are investigating.
Certain problems make it relatively easy to test model results against real-world outcomes (e.g.,
how fuel consumption varies as a function of the kind of flight training we are doing).

The more the problem we are investigating involves predicting results in combat, the harder
it will become to test model results against real-world outcomes. For one thing, we have a small
number of real-world wars against which to compare our model results. In addition, careful
historical analysis of actual battles shows that outcomes depend on a series of hard-to-replicate
and unlikely-to-recur particular events.

Even if it's hard to know if a particular model is doing a good job of predicting combat out-
comes, we can learn a great deal from modeling. For one thing, building a model forces us to say
what premises we have to believe, in order to believe a particular prediction. Sometimes we can
subject those premises to empirical tests. Depending on what those tests show, we can revise our
prediction and, ideally, get closer to understanding "ground truth."
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overall outcome; and (3) stability in a chaotic system is unnatural and quite temporary, but where

stability does exist it is determined by the relationship of very few variables. Therefore, controlling

these key variables can control behavior in a chaotic system for a brief period. But, because this

controllable time period is brief, we cannot predict the distant future with any degree of certainty.

The global weather system is an excellent example of a chaotic network. We cannot predict

the weather accurately more than 72 hours in advance; our attempts to predict the weather fur-

ther beyond the simplest generalities are futile, according to chaos theorists. But we know the

probable range of outcomes from the global weather network, therefore civil engineers can plan

their designs around 50-year storms, i.e., severe storms that statistically happen every 50 years,

while no one tries to say exactly when the next one will occur. Also, we may be able to control the

weather over a short period if we could identify and learn to manipulate the key parameters, such

as by seeding clouds to precipitate rain.

These ideas can have important implications for the study of war. The network model is much

more compatible with our experience of war than the chessboard. Analysts are not able to predict

other than the grossest outcomes of war. If we can identify and learn to man-age the key determi-

nants of the outcome of the process (which may be very few), then we can control the process of

war over short, critical periods. This requires that we use higher mathematics and probability, ac-

cepting ranges of outcomes like worst case, best case, and most likely case to compensate for the

much higher levels of uncertainty we will have to accept with network modeling.



Models differ in their ability to predict what will happen in the real world. Some models do
not predict the absolute outcome of events very well, but they are still useful as long as they display
a relative difference in performance among the alternatives that will carry into the real world.

Types of Analytic Models
DoD uses many standard models for analysis. For example, Joint Simulation System (JSIMS)
provides a validated computer-simulated environment for use by the CINCs, their compo-
nents, other joint organizations, and the Services to jointly educate, train, develop doctrine and
tactics, formulate and assess operational plans, assess war-fighting situations, define opera-
tional requirements, and provide operational input to the acquisition process. Another example
is actually a suite for four simulation models, JQUAD, which contains electronic warfare, com-
mand and control, network, and operational intelligence models. These models, along with nu-
merous others that have been validated by the Pentagon, establish methods for the most
frequent analyses by using common frames of reference. Using an already-accepted model au-
tomatically focuses discussion on the unique aspects of the decision whereas with a new model,
we will have to gain acceptance before we can advocate our preferred alternative. Therefore, we
should always consider modifying existing models to fit our decision rather than building a new
model from scratch.

Below we list some of the more common types of analytic models that can be used for defense
resource allocation decisions. Which model we select depends entirely upon the situation; an ap-
propriate fit between model and problem is paramount. Because models vary in abstraction, com-
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PREDICTION AND THE MOBILITY REQUIREMENTS STUDY AIRLIFT MODELS

In 1991, the Joint Staff evaluated U.S. strategic lift to determine whether it was adequate to

deploy U.S. forces in time to achieve national military objectives. The abstract models the Joint

Staff used for comparing alternative aircraft fleets for strategic airlift had simple criteria and algo-

rithms. Their criteria included gross weight carried, airspeed, mechanical reliability, and range; it

did not include outsize or oversize cargo.5 Either of these types of cargo causes the U.S. Transpor-

tation Command to use aircraft contrary to the model, i.e., the transport aircraft cannot load

cargo to the study capacity. Thus, the models did not accurately predict the actual behavior of the

strategic airlift fleets under true operational conditions.

Despite their limitations, the models were still very useful for the Joint Staff. They enabled

them to determine the relative differences in performance among the aircraft fleet alternatives.

The Joint Staff did not mistake these insights into relative performance differences among fleets

for absolute outcomes. While they could conclude one airlift fleet had 30% more capacity than

another did, they knew they could not say that the first fleet would deliver X tons of supplies in

seven days while another took ten. Although we would like the model to predict faithfully what

will happen, we can often settle for models that show differences in relative performance, despite

their inability to evaluate absolute performance.

5. Outsize cargo, e.g., tanks, exceeds 9.75 feet in width, 8.75 feet in height, or 90.8 feet in length; it is the largest class of air cargo

and it fits into C-5 and C-17 aircraft but not C-141s. Oversize cargo is typically a single item, like a pickup truck, that does not

exceed the size of a standard 463L pallet but does not allow the air-craft to stow cargo to its maximum capacity or efficiency.

C-141s can carry oversize cargo. Source: Military Airlift: Airlift Planning Factors, AFP 76-2 (C-1), 1982, p. 4-5.



plexity, and their ability to predict in different situations, we must have a clear problem definition
and a thorough understanding of how our criteria interact before we select a model.

We often run models using scenarios as backdrops. Scenarios are situations, a collection of
boundaries, including facts and assumptions from the Definition Phase, and other necessary
conditions for running the model, such as location, time frame, sample size, etc. We may specify
scenarios for the problem we are solving or have the analysts develop them based upon existing
or predicted scenarios, e.g., the Defense Planning Guidance includes two appendices of illustra-
tive scenarios (one current and one future) for force structure planning; the Combatant Com-
manders test their concepts of operations in scenarios loaded into large models.

Again, the names of these models are less important than understanding their character and
understanding how we can apply them to different types of decisions. We also present them
here because analysts often use this terminology in their descriptions and proposals.

DETERMINISTIC MODELS
These models require a thorough understanding of causes and effects in the environment or
problem we are modeling. We change one or two key input variables, leave the other variables
stable, and produce an outcome resulting from the input changes: input a leads to output b. We
use deterministic models when accurate prediction is especially important and we have a high
level of certainty about the controlled variables in the model.

Many simulators use deterministic models. In an aircraft flight simulator, moving a control
in a particular manner causes change in the flight characteristics related to it. The model deter-
mines the overall effect the control adjustment will have, and reacts accordingly. Deterministic
models, assuming they are built correctly, are very reliable predictors—they will produce the
same result under the same circumstances every time. Therefore, we must decide if that is also
true of the portion of the real world we are trying to describe before we commit to a determinis-
tic model.

INVENTORY MODELS
Used primarily by logisticians to manage stock levels, these models play an important role in force
planning, particularly in procurement, because life cycle costs are dramatically affected by spare
parts and energy consumption: their cost, usage rate, storage, and delivery. To be effective, these
models require solid estimates about user consumption. Generally, inventory models contain two
or more competing cost curves, e.g., storage cost and transaction cost for spare parts.

Using a naval example, storage cost is the expense of maintaining an inventory of spare parts
for rapid issue to the Fleet. Transaction cost is the cost of obtaining an item directly from a sup-
plier on demand; generally this takes longer than an internal transaction within the Navy and is
more expensive because there are no price breaks for large volume purchases. But if we store too
many of these spare parts, we have several problems. First, the Navy may have too much pur-
chasing power tied up in inventory—stocking the inventory imposes opportunity costs in other
areas. Second, warehousing them creates costs by itself. Finally, if these parts are technologically
perishable, we will waste resources if they are never consumed and they have little disposal
value. The analyst seeks to find the lowest cost over the life cycle of the system to balance the two
costs and recommend an inventory level to the Navy that optimizes responsiveness (adequate
inventory within the Navy) and transaction costs (frequency of replenishment of that inven-
tory).
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ALLOCATION MODELS
Allocation models examine the
most efficient assignment of re-
sources to tasks. Typically, we use
spreadsheet programs to explore
the effects of a change in one area
upon another. In DoD, we use allo-
cation models to solve assignment
problems wherein we have a num-
ber of tasks and a number of units
that can fulfill them. When a CINC
provides guidance for a quarterly
schedule for his ships, he considers
current operational requirements, exercise participation, in port maintenance requirements,
and port visits in support of his Theater Engagement Plan. These requirements and the list of
ships available could be built into an allocation model that would optimize scheduling, or at
least provide a rough schedule to use as a starting point. Allocation models are also useful for
solving transportation or network problems in which the analyst seeks the most efficient path
from a starting point to an outcome. The variables in the model behave very much like the val-
ues in utility curves (see Chapter 6).

An example of an allocation model is shown in figure 7-2. In this case, we are buying head-
gear to stock a uniform store and we have two competitors that have provided price curves. We
need 50,000 hats (fixed effectiveness), so we select the most optimal solution by reading up and
then across to identify the lowest cost—Ray's at $200,000.

STOCHASTIC MODELS
Stochastic models are always dynamic or interactive; they incorporate time, randomness, and
probability theory. They are very useful when we have high degrees of uncertainty, when input a
yields output b, c, d, or e—or any combination of them. One branch of stochastic models in-
volves queuing processes. Queuing models derive their name from their initial applications in
the service sector, i.e., they were used to identify the number of passenger gates and their ar-
rangement in airports. To build this kind of queuing model, the analyst first in-puts the prob-
lem boundaries: the service or process time (fixed and known) and the behavior rules for
processing the people in line, including decision rules such as: First In, First Out; Last In, First
Out; or Very Important People To The Head Of The Line. Then the analyst designates the num-
ber of service stations (the range of solutions) for different runs of the model. The model uses
stochastic methods to input customer arrival times (the random or probabilistic event) with a
variety of surges and slack periods (random or designed by the flight schedule) as the model
runs. The output of each run is information about customer waiting times: average, longest,
mean, etc. An airline using this model could set a goal for an average waiting time and then use
the model to predict how many customer stations it needs manned to satisfy loading at different
times for different days.

In DoD, queuing models help us plan the overall capacity we require for maintenance and
support of a force structure. To support the 1997 Quadrennial Defense Review, DoD con-
structed a wargame called Dynamic Commitment to examine the demands that might be placed
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against the U.S. military in the next fifteen years. The analysts constructed a series of scenarios
from major theater wars to a variety of peace operations and let the model generate their se-
quencing stochastically in accordance with some rules, i.e., no more than two major theaters
wars simultaneously and at least five years between major theater wars in the same theater.
None of the strings was meant to be a literal prediction of the future; rather the analysts used the
results of their many runs to identify the character of the force structure that was most likely to
be successful at meeting every requirement. (Unfortunately, the force structures identified ex-
ceeded the resources likely to be available by a wide margin.)

Markov chains are another stochastic modeling tool. Markov chains exist when the probabil-
ity of one event happening depends on what happened in the event that immediately preceded it.
These are the mathematical equivalents of the branches and sequels we use in operational plan-
ning. For example, service-recruiting targets are a function of force structure requirements and
retention; changing either will affect recruiting goals. Stochastic modeling has become prevalent
with the use of computers that can manipulate a plethora of data, equations, alternatives, events,
and possible outcomes; therefore we use these models to support wargaming.

COST ANALYTIC MODELS
Cost models range from the very simple to the extraordinarily detailed. Some use advanced
mathematical techniques, others only basic arithmetic. Some require extensive computer sup-
port, others analysts build manually or with simple spreadsheets. Remember that cost estimat-
ing methods tend to overlook costs that cannot be measured in dollars and these other types of
cost are often more important to us than dollars alone.

For existing weapons and support systems, we can estimate cost using historical data. How-
ever, for many force-planning decisions, the systems do not yet exist. Fortunately, there are nu-
merous cost estimating methods that can be used to predict future costs. Three of the most
common are the analogy, parametric, and industrial engineering methods.

Analogy Method

When detailed cost data is not available, an analyst may estimate cost by making direct compari-
sons with similar existing systems. For example, using the analogy method, we can approximate
the value of surplus land on a DoD installation based on the sales of similar property nearby. We
often estimate low-value equipment proposals, commodity purchases, and operating and sup-
port expenses using analogies. This method is also very effective for estimating the cost of
off-the-shelf equipment where comparable prices are as close as the nearest catalog. In order to
use the analogy method for new or complex concepts, an analyst needs considerable expertise
and judgment. The less compatible the subject and the model, and the older the existing com-
parator, the less confidence we have in this kind of cost estimate.

Parametric Method

We may deem it impossible to find an appropriate analogy to use to estimate cost for a new item.
However, we may be able to identify characteristics or parameters of the new system that are
similar to the characteristics of other existing systems. Using those carefully identified parame-
ters, we seek a cost estimating relationship that we can project onto the new acquisition. The
cost estimating relationship sets this method apart from the analogy method. It is a mathemati-
cal expression that relates one or more particular acquisition characteristics to cost, e.g., cost per
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ton for the construction of a ship. Note that the cost-estimating ratio itself may be based on an
analogy; we may estimate the cost of a new government warehouse, larger than any previous
building we have contracted, by multiplying the area times the cost per square foot of an air-
plane hangar or large civilian warehouse.

We use the parametric method in DoD for estimates early in the Defense Acquisition Sys-
tem. Parametric estimates can be very accurate when they are based on realistic, historical expe-
rience, as demonstrated in the accuracy of F/A-18E/F cost estimates, which were based on the
costs of the C/D model. Moreover, we can calculate the cost estimate quickly once we establish
the cost estimating relationship. Parametric costing may result in pessimistic estimates if we do
not adjust the formulas based on historical experience for improved production methods or re-
cent lessons learned.

Industrial Engineering Method

The industrial engineering cost estimating method is often referred to as the bottom up ap-
proach. An analyst using this method consolidates estimates for various segments of a project
into a total estimate for the entire project. Government analysts estimating the cost of a new
building use this method by estimating the structural, electrical, plumbing, heating and air condi-
tioning, and other component costs of the projects. They may break each of these estimates down
further into sub-components such as labor, materials, equipment, etc. The industrial engineering
method is the most thorough way of estimating cost, but it can be quite time consuming.

Evaluating the Model
Before the analyst runs the model and we compare alternatives, we will evaluate the model to
ensure it reflects how we think the criteria behave and interact. First, we review the Definition
Phase to ensure the guidance we gave the analyst conforms to our analytic objective and that our
analytic objective still makes sense. Then we review the analyst's model proposal to ensure it
aligns well to the analytic objective, e.g., we do not want to use a complex stochastic model to
evaluate a simple decision about bulk commodity purchases. This kind of mismatch happens
most often when we use an existing model for a new decision situation. Then we evaluate the
model's level of abstraction, complexity, and predictive qualities in terms of validity, reliability,
and practicality. When we are satisfied with the qualities of the model, we should obtain the de-
cision maker's approval before proceeding further.

MODEL VALIDITY
As we examine the validity of our model, we ask whether it captures the most important behav-
iors of the alternatives at the right level of resolution—does it model the right things? Do the cri-
teria reflect our perceptions of reality? In a weighted model, do our utility curves and weights
reflect our values? The boundaries in the model must be consistent with the elements we identi-
fied in the Definition Phase. It must model the alternatives objectively. We must understand the
predictive qualities of our model to ensure it helps us distinguish among the outcomes and we
must have confidence that the models' projections are consistent with the real world. Finally,
the model's level of complexity must be appropriate for the decision maker.

We need to view the model as a totality, also. We can get mesmerized by the detailed evalua-
tion of criteria to a point where we lose sight of the analytic objective. Air campaign planners,
used to trading off strengths and weaknesses of tactical aircraft, sometimes need to be re-
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minded to use models that are robust enough to include tactical missiles, bombers, and attack
helicopters.

MODEL RELIABILITY
Where reliability is concerned, we are interested in the model's behavior: does it measure well?
The internal consistency of our model determines whether we are confident that the results of
the model (predictions) will be the same whenever the model is used under similar circum-
stances. We must be able to measure the criteria well at the model's level of abstraction.

The model may be affected by measurement errors as we collect data on the criteria, especially
if we fail to measure with enough resolution. We must determine how much error is tolerable
while running the model and whether we must measure some criteria more precisely than others.
If others are providing data, we must be satisfied with its accuracy. Generally, the more abstract
the model, the simpler it becomes and the more forgiving it is of our measurement errors.

MODEL PRACTICALITY
Some models are more costly than others, and we seek to balance realism (validity and reliabil-
ity) with cost as we address the model's practicality. Reducing cost to avoid the difficulty and ex-
pense of real world testing is our reason for modeling in the first place. The resources we
consume in modeling should be commensurate with the importance and urgency of the prob-
lem to our organization.

The more abstraction we accept (the further we move away from reality) in the model, the
more vulnerable we are to criticisms that the model does not reflect the real world. In addition,
our results are more difficult to "prove." If the model's predictions are too unreliable, we will
have to improve its data, reduce its level of abstraction or make the model more complex. We
add complexity most often by making the algorithm more intricate, by adding variables (not
necessarily criteria), or by increasing the level of detail in their measurement. All of this takes
resources—time and money.

Analytic Models and the Information Age
The ability to store and retrieve data electronically from sources all over the world has greatly
improved the quality of analysis in general and models in particular. Their validity and reliabil-
ity are increasing as computers allow increasing complexity without degrading reliability signif-
icantly and at a reasonable cost. But computers may also conceal errors if we fail to understand
the assumptions made by programmers and how they related our criteria to one another. “Gar-
bage in, garbage out,” requires we be able to identify what is garbage.

DECISION SUPPORT SYSTEMS
Decision support systems are interactive software we run on computer hardware ranging from
mainframes to networks to laptop personal computers. Decision support systems are very use-
ful for organizing and manipulating subjective inputs from multiple participants in a decision
and converting them into preferences for alternatives. The simpler systems help us build
weighted models to compare procurement alternatives; the more complex decision support sys-
tems help us make force structure and policy decisions.

Decision support systems allow us to introduce structure and rigor to very complex prob-
lems and they are especially valuable when we cannot adapt other techniques to model the prob-
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lem. For example, the Decision Strategies Department of the Naval War College, which has
professional facilitators and uses a network of laptop computers, has examined policy alterna-
tives for issues like confidence-building measures between Greece and Turkey and NATO en-
largement. Because of the constant requirement for subjective judgments, we strongly desire the
decision maker to be present when we use a decision support system for a policy issue.

NETWORKED MODELS
Our ability to exchange data through computer networks makes data commonality feasible and
the process of data collection much easier. Decision makers in different locations can view the
same spreadsheets and do sensitivity analysis during a teleconference from their workstations.
The Joint Strike Fighter program is using this shared data base capability. The contractors and
the program office use a common cost model; the DoD Program Manager can discuss cost data
with a contractor while they both view the same database, tremendously simplifying coordina-
tion and reporting.

Using the Model to Evaluate Alternatives
Once we are satisfied with the model, we insert the alternatives and evaluate each. Recall that
sometimes we have the alternatives before we build the model. In this case, we may have tailored
our model to highlight the differences between the known range of alternatives and our fore-
knowledge may affect our criteria selection in particular. Because we use criteria to discriminate
among options, we are unlikely to select an attribute whose value is equivalent for each alterna-
tive as a criterion. As we run the model, however, new alternatives may emerge and that may re-
quire us to re-evaluate our criteria and adjust the model.

When we create or learn of the alternatives after we build the model, the application is more
straightforward. Sometimes, however, an unusual alternative arises after we have assembled our
model that forces us to reexamine it, either to add new criteria or to identify a new requirement
we need to apply to all the alternatives. The new criteria may not have discriminated among the
previous options because they scored similarly. The new requirement may be necessary to ex-
clude impractical solutions, e.g., a training range may be ideal in every regard except it is too far
from homeports.

After the model runs, we have its results. Depending upon the nature of the problem and the
model we used, they may vary from identifying a single preferred option to a hierarchy of scores
for different alternatives, or a series of tables. In any event, we should be able to interpret them
easily and explain them to others with clarity as we did with the radio example in the previous
chapter and which we will continue below. We should not hesitate to stop and examine the
model if its results defy easy explanation. While the possibility exists of new and exciting in-
sights, it is more likely we have made a mistake and we need to find it and correct it.

When we are satisfied with the results, we need to create reports and briefings to support the
decision maker. The seniority of the decision maker, the time available for briefing, and the
magnitude, urgency and importance of the problem we identified in the Definition Phase will
determine the amount of detail we present. Naturally, we should be able to explain the connec-
tive tissue from the most general of slides down to the measurement data if need be, just as an
Executive Summary derives from a formal report and the report is based on modeling and data
(often included in appendices).

Executive Decision Making 7–11



Sensitivity Analysis
After the analysts run the model and results emerge, we often observe that some facts, assump-
tions, or criteria have an unusually strong influence on the outcome. Also, the analysts may not
have data for some variables when they run the model, so they assign them arbitrary values, ef-
fectively making their own assumptions. We need to know how sensitive the results of the analy-
sis are to changes in the values of variables, particularly if those values were estimated. To
establish how changes in the value of a particular variable affect outcomes, we fix the values of all
the variables in the model except the one under study. We then run the model several times, using
a different value for the variable under study—high, low, and medium values for example—to see
how changes in that variable affect the results. This process is called sensitivity analysis.

We may use sensitivity analysis in many ways during the Analysis Phase. First, we may
change the boundaries of the problem or the initial conditions by altering facts or assumptions.
For example, during Dynamic Commitment, changing the scenario queue to allow only one
major theater war at a time results in a significantly smaller force structure set. We may also di-
rectly change the weights in a weighted model or the values of a criterion for different alterna-
tives to explore variants and combinations of options. We can use sensitivity analysis to
examine a criterion through the estimated range of its measurement error to see if we need
better data.

Computers enable us to conduct a vast amount of sensitivity analysis rapidly and easily. We
can vary almost any data or assumption in the model to determine whether changes are impor-
tant to the results. In addition to its information value, sensitivity analysis is a powerful cost sav-
ing technique. For example, one of the variables in the model may be very difficult and
expensive to measure. If we establish a range of probable values, run the model, and the prefer-
ence between the alternatives does not change for these different values, the model is insensitive
to that variable and we can use an assumed value without undermining the analysis.

If the outcome does change with different values, it is sensitive to that variable and we need
to find a way to measure it directly or through a proxy. If the sensitive variable is an assumption,
our last resort may be to display multiple sets of results for the different values of the assump-
tion. For example, if we are comparing the life cycle costs of aircraft alternatives, each with dif-
ferent fuel consumption rates, the relative difference among options may be sensitive to our
assumed price of jet fuel. We can check for sensitivity by running the model with our lowest esti-
mated fuel cost and again with our highest estimated fuel cost to see whether the cost rankings of
the alternatives change.

Another way to employ sensitivity analysis is to change the weights in a weighted model (without
changing the values or scores of any alternative's criteria) to see if a change in weight alone changes
the relative rank order preference of the alternatives. For example, let us return to last chapter's por-
table radio scenario and the output of its weighted model (see figure 7-3 on next page). We repro-
duced the alternatives and criteria, with their weights added in parentheses, in table 7-1.

RADIO
PURCHASE
COST (25)

TOC
(15)

RANGE
(15)

WEIGHT
(20)

SECURITY
(15)

RELIABILITY
(10)

TOTAL
(100)

POPIEL 1995 23 15 0 20 0 0 58

WHAMMO
3000

11 7 12 16 15 6 67

ZONKER 101 4 14 15 6 15 10 64

Table 7-1. Radio Alternatives.
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Recall that when we ran our
weighted model, the Whammo
3000 scored the highest. The Popiel
1995, a lightweight inexpensive op-
tion with the minimum acceptable
performance, scored poorest.
What happens to the results of us-
ing the model if we change the
weights to reward cost and effec-
tiveness equally, i.e., weight each 50
vice the original 40 and 60, respec-
tively? Assuming the weight
changes are spread proportionally
down to the criteria in the lowest tier and the performance of the alternatives does not change,
we get a new preference for the Popiel 1995 as shown in table 7-2:

INITIAL
COMPARISON

ADJUSTED
COMPARISON

RADIO
COST
(40)

EFFECTIVENESS
(60)

TOTAL
(100)

COST (50)
EFFECTIVENESS
(50)

TOTAL
(100)

POPIEL 1995 38 20 58 47.5 16.7 64.2

WHAMMO
3000

18 49 67 22.5 40.8 63.3

ZONKER 101 18 46 64 22.5 38.3 60.8

Table 7-2. Radio Model Sensitivity to Cost and Effectiveness Weights.

Thus, we see the importance of choosing our weights carefully and rationally. When we see
how fairly small changes in weighting can lead to large changes in outcomes like the shift in
model-preferred alternatives between a high-cost, high capability radio to an inexpensive, less
capable radio, we must also ask about the validity of the weights in the model. Which is really
more important to us—cost or effectiveness? We can also make a strong argument that by
building the model before we know the alternatives we are more likely to reflect our organiza-
tion's values impartially. Further, we can understand why, if we use someone else's model, we
need to understand how it works before we accept its results.

We can also use sensitivity analysis to see how much change is necessary in one variable of
one alternative to make it the preferred choice—or determine that no amount of change in that
area will make it so. Returning to the hypothetical radio scenario (with the original weights in
figure 7-3), consider the Zonker Company's situation: it is very competitive with the Whammo
model. What can it do to overtake Whammo within the model? The Zonker 101 has achieved
maximum performance in three of the four effectiveness criteria, but it scores poorly under
Weight. If Zonker can improve performance in this area by lightening a calculable (if they know
the shape of the utility curve for weight) number of pounds from the radio, they can achieve a
higher score than Whammo. Likewise, they may be able to reduce their profit margin in order to
decrease their selling price and become more competitive.
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Figure 7-3. Weighted Model for a Portable Radio
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CASE STUDY: THE ANALYSIS PHASE—MODELING
USMC MEDIUM-LIFT REQUIREMENTS: THE V-22 OSPREY AND HELICOPTERS

Returning to the V-22 and helicopter analysis, we now examine how the Institute for Defense

Analyses evaluated their analytic objective: to compare the V-22 and helicopter alternatives on

the basis of cost and operational effectiveness. IDA used a cost-risk-effectiveness approach for

their modeling. IDA studied cost separately, and then combined cost and effectiveness to achieve

the analytic objective. What little risk they examined was built into their effectiveness measure-

ments. IDA's analytic method is summarized in the diagram below:6

Recall that IDA fixed cost by creating two sets of equally expensive aircraft fleets to compare

the V-22's and helicopters' effectiveness. The first set was sized to the Marines' desired fleet of

502 V-22s and the second to what DoD was willing to budget for medium lift—356 V-22 cost

equivalents.

IDA evaluated the effectiveness of the aircraft fleets in the missions mandated by Congress

and in an additional area, Anti-Submarine Warfare, specified to them by DoD. The missions were:
• Amphibious Assault
• Sustained Operations for Logistics Support
• Hostage Rescue/Raid
• Overseas Aircraft Deployment
• Combat Search and Rescue
• Special Operations
• Drug Interdiction
• Anti-Submarine Warfare

Because the majority of medium-lift aircraft are intended for the amphibious assault role, IDA

accorded it particular attention. IDA evaluated the air defense threat in each mission scenario and

developed operational concepts that they coordinated with the services and the Joint Staff to en-

sure they were modeling aircraft employment realistically. Using their abstract operational con-

cepts, IDA estimated the performance of each type of aircraft—the V-22 and the six helicopter

options—to determine combat effectiveness. They ran a very large set of excursions

to study the fleets' performances in the scenarios.

The Institute for Defense Analyses used at least one model in each of the eight

missions. We will concentrate on the amphibious assault scenario because it is the

most important to the overall analysis and because IDA used the most complex

models for that mission.

IDA used an existing deterministic model to analyze amphibious assaults. This

engine was the Amphibious Warfare Model, a 1970's era computer simulation of a

conventional theater assault, developed and updated continually by the Center for

Naval Analyses. To examine the performance of the options under varying condi-

tions, IDA selected two Department of the Navy case studies and built two corre-

sponding vertical assault forces, each attacking under different battlefield

conditions. The assault forces began on amphibious ships 50 nautical miles from the

landing zones in both scenarios. A notional Third-World Soviet-style Motorized Rifle

Division opposed the Marines in each.

6. Simmons, L.D. Et al, Assessments of Alternatives for the V-22 Assault Aircraft Program, Executive Overview, Institute for

Defense Analysis, 1991, pp. 3–4.
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IDA made some critical assumptions before running their model. One of the most controver-

sial was a change to Marine Corps doctrine. In 1990, Marine planners assumed the vertical assault

would land in only two waves to

ensure the first wave had enough

combat power to survive enemy re-

actions until the remainder of the

force landed. With the V-22 lower

option of 356 aircraft, the Marines

could not land 50% of the vertical

assault force in the initial wave. IDA

assumed that the Marines would

accept delivery of the vertical as-

sault combat power in three vice

two lifts if the build-up time was

not compromised. They reasoned if

the Marines' desire was to get a

given capability ashore within a

time span from H-Hour to time T, the V-22 (with its superior speed) could deliver the same force in

the same time frame in three lifts, vice two for the helicopters, and still meet the Marines' require-

ment, as shown below.

Some critics challenged this assumption, notably Dr. David Chu, Assistant Secretary of De-

fense for Programs Analysis and Evaluation (see Appendix 3). He noted in his congressional testi-

mony that the 356 aircraft V-22 fleet would have to generate a historically high sortie rate from

the assault ships to achieve the build-up in combat power in the time the scenario required. The

Marines, however, concurred with IDA's interpretation and skep-tics accused them of redefining

doctrine to suit a procurement goal. DoD ultimately decided it was up to the Marines to define

their doctrine and if they chose to modify it, that was an internal Marine Corps decision.

A second major assumption the Institute for Defense Analyses made concerned the method

the CH-53E heavy lift helicopters, present in each helicopter fleet option, used for lifting external

loads slung underneath the aircraft. The Marines were experimenting with methods of connect-

ing two vehicles together as a single, stable load

beneath the helicopter to reduce the number of

sorties needed during an assault. If they were suc-

cessful, they would reduce the number of V-22

(and medium helicopter) sorties dedicated to lift-

ing vehicles. At the time of the IDA study, the

Marines had not tested these methods at sea.

Skeptics were concerned that linking the vehicles

would be impractical on darkened, rolling ships

and that unlinking them in a landing zone under

fire would be too hazardous.

IDA, as in the 1990 Navy study, assumed

CH-53Es delivered half the vehicles in dual lifts for

smaller assault forces. They assumed all the vehi-

cles would be in dual slings to lift the larger assault
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forces. IDA did sensitivity analysis to see how the number of vehicles in double slings affected the

results of their model; they found the more vehicles that were double-lifted by the CH-53Es, the

smaller were the delivery performance differences between medium-lift options, but that the

rankings remained the same.

Returning to the assault scenarios, the first study situation was Department of the Navy (DoN)

Lift I7 from 1983. It had the Marines make a night assault in rolling terrain. The low aircraft flight

profiles reduced the effectiveness of the enemy air defenses because they were masked by ter-

rain. It also assumed poor reaction times by the defenders. The second scenario was from a 1990

study, DoN Lift II8; it set the assault force against a faster-reacting defender about two thirds as

well armed as its 1983 counterpart. This time the assault happened in daylight over flat terrain

with better fields of fire for the air defenders. Not surprisingly, aircraft casualties were higher in

the second case and the casualty differences between aircraft options were larger. IDA ran 388

excursions, varying assault force compositions, tactical factors, threat, and terrain for each aircraft

fleet. IDA measured the percentage of the Marine vertical assault element lost attaining a 3:1 ad-

vantage in combat power over the defenders to compare and rank the medium-lift options.9

Using both assumptions, IDA ran the model for the aircraft fleets in the two scenarios. With

survivability as the principal measure of effectiveness, the V-22 outperformed the helicopters in

the amphibious assault mission. They displayed the results in a series of bar graphs, one set for

each fleet in each assault case, as shown below (figure 3 from IDA's Executive Summary).

These bar graphs represent the results of the 388 combinations of enemy force composition,

tactical factors, threat, and terrain that IDA explored. Those results all fell between the ranges of

these bar graphs. In the Amphibious Warfare Model, the size, speed, design, and length of time

an aircraft was exposed to enemy air defenses during each possible engagement determined its

casualty rate. The V-22, with its higher speed, moved through air defense engagement envelopes

faster than the helicopters, therefore it took fewer casualties (although the smaller, harder-to-hit

helicopters approached the V-22's survivability rate). Moreover, if DoD opted for the smaller heli-

copter fleets, they would also have to buy 200 to 260 large, more vulnerable CH-53E helicopters

to compensate for the limited external load capability of the smaller helicopters.

Next we will evaluate the validity of the Amphibious Warfare Model for assessing helicopters

and the V-22—is this the right model for comparing the medium-lift aircraft alternatives? The

level of abstraction of the model for this application is very high because IDA used a very small

portion of a very large model for this study. This portion distilled the effectiveness of the aircraft

options into a single MOE, survivability, and used a very simple combat engine to evaluate each

aircraft. This forces us to ask whether size, speed, length of time in the air defense envelope and

the resilience of each aircraft to withstand battle damage are the only important determinants of

aircraft effectiveness. How will the V-22 interact with other Marine aircraft for flight operations

(flight deck crew turn around time) and for long-range assault (since it can outrun its attack heli-

copter escort)? Is the number of deck spots important to generate sortie rates? Is unit integrity of

the passengers or unloading time important in the landing zone?

7. Department of the Navy Long Term Amphibious Lift Requirement and Optimum Ship Mix Study, Office of the Chief of Na-

val Operations/Headquarters Marine Corps, 25 May 1983, CONFIDENTIAL.

8. Department of the Navy Integrated Amphibious Operations and USMC Air Support Requirements Study, Office of the

Chief of Naval Operations/Headquarters Marine Corps, 5 April 1990, SECRET.

9. IDA ran additional iterations to examine 2.5:1 and 3.5:1 build-ups; the preference rankings of the alternatives remained the

same, i.e., the model was not sensitive to how much combat superiority the Marines required.
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The behavior of the air defense forces is also greatly simplified; it is based on the air defend-

ers' reaction time. The deployment of the air defenders was arbitrary, but it was the same for all

the assault aircraft options in the model. These are all clearly shortcomings in replicating reality;

but are they fatal? This is where we must insert professional military judgment to evaluate validity

and determine if the relative performance differ-

ences of the model carry into the real world. In

our opinion (and DoD's, including the Marine

Corps), the level of abstraction is appropriate for

this 1990 decision and the simplifications were

acceptable.

The model is predictive and it needs to be; it

is forecasting aircraft casualties during the build

up of the assault force in the two cases described

above. How accurately we think it predicts de-

pends on our confidence in the assumptions we

discussed earlier and our acceptance of this high

level of abstraction. We think it will predict the

relative behavior of the aircraft alternatives accu-

rately. IDA could make this model more com-

plex—it could incorporate flight operations variables, a more complicated combat engine and

more types of air defense weapons. But would these improvements change the outcome of the

model output? Probably not.

Now we turn to the reliability of this model—does it model accurately and consistently? We

have an inherent reliability problem whenever we rely on contractor projections about aircraft

that have not been built yet, in this case the V-22 and the new helicopter. The values for the vari-

ables in this model were readily available to IDA from existing databases or were provided directly

by the contractors and we have a high level of confidence they reflect real world performance.

IDA ran the model hundreds of times and the outcomes were consistent throughout the study.

The overall reliability of this model was very high.

This was an important and urgent study; practicality was central to many of IDA's decisions

about the model. They knew the six previous studies comparing the V-22 and helicopters had not

provided enough information to finally decide this aircraft selection; they felt compelled to add

new knowledge to support the decision makers. IDA needed to conserve resources, especially

time, producing this analysis. They cleverly adapted existing studies and an existing model to com-

pare the aircraft options, tools previously accepted by the major decision participants. Discussion

and controversy quickly focused on the limited number of assumptions and the results of using

the model, which was what the participants desired, i.e., they were not distracted examining and

debating the model. Enhancing the model to reflect reality in more detail, as described above,

was not worthwhile because even if IDA increased the level of detail it would not change the

rankings of the aircraft options. The Institute of Defense Analyses scored well in practicality with

this study.

IDA presented their findings in six volumes, including the Executive Overview. They presented

most of the results in tables and graphs and displayed the utility of the different options, arranged

by fleet cost and alternatives. IDA briefed the services, Joint Staff, and Defense Secretariat of their

results and eventually testified before Congress.
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Summary
As our decision becomes more complex, analytic models become less capable of providing
clear-cut, definitive answers about how we should choose among alternatives. But even then,
well-constructed analytic models provide important insights about how and why the alterna-
tives perform as they do. Combined with professional judgment, this kind of information can
guide our choice of courses of action.

Models are important tools that facilitate our decision making by simplifying complex
problems, making them easier to understand, change, and manipulate. By using models, we re-
duce the cost and effort of evaluating alternatives by substituting modified or imaginary envi-
ronments for actual conditions. Based on the nature of our decision, we select the type analysis
we are going to use: exploratory analysis and concept studies for new ideas, cost-risk-effective-
ness models for analysis of alternatives, and causal analysis for policy options.

We select or build our models on the basis of the decision we are making, the type of analysis
we are doing, and our required levels of abstraction, prediction, and complexity. We prefer to
use existing models rather than creating new ones, but we will not force a fit. As with the criteria,
we evaluate our models on the basis of validity, reliability, and practicality. We perform sensitiv-
ity analysis to identify which variables have the greatest effect on the results of comparing alter-
natives, enabling us to target changes to options (or the model) to have the greatest effect.

For all their strengths, good models do not guarantee we will make good decisions. Models
can have significant shortcomings, especially if they are used incorrectly. Choosing or building
the right model to use in a particular decision situation is highly dependent upon the judgment,
experience, and collaboration of the decision maker, action officers, and analysts.
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Throughout the Analysis Phase, IDA verified they were executing the decision maker's de-

sires. An Office of the Secretary of Defense Steering Committee held five meetings during the

course of the study to validate IDA's plan and monitor its progress. Importantly, IDA validated

their scenarios with DoD's subject-area experts to include military judgment.


